User login

The Challenges of Functional Inkjet Printing

(November 2015) posted on Wed Nov 11, 2015

New digital technologies are addressing nozzle clogging, viscosity, ink migration and – always – hoping to increase print speed.

click an image below to view slideshow

By Vince Cahill

Printing done within industrial manufacturing processes has traditionally been dominated by analog methods, particularly screen printing. Inkjet is increasingly becoming part of the discussion, however. Beyond well-known commercial applications, such as signage and outdoor advertising, inkjet printing now commands the majority of the market for tile decoration. Almost all expiration dates and batch codes on beverage cans are inkjet printed. Inkjet is playing an increasing role in printing glass, packaging, flooring, laminates, and other home décor products.

While these applications take place as part of a manufacturing process, and are therefore industrial, they are (arguably) decorative in nature. Some of the more exciting industrial work being done today involves printing that imparts functional characteristics to the final product. Applications such as conductive and insulated patterns and circuits, electronics, LCD and OLED display screens, photovoltaic fabrication, optics, and a host of medical work,including the printing of biological materials, only hint at the possibilities.

These fields are growing rapidly, but to this point, are not converting from analog to digital technology as rapidly as some sectors of the commercial printing industry. I’ll look at some of the challenges of functional printing and the developers working to address them below. I’ll be looking at inkjet and inkjet-like non-contact methods of depositing inks and other materials – not just continuous inkjet (CIJ), piezo inkjet (PIJ), and thermal inkjet (TIJ), but also similar processes that have been adapted for industrial use. (1) These related technologies can sometimes extend the capabilities of existing inkjet systems – for example, by providing the ability to jet larger particles and higher viscosity fluids. I won’t spend much time on decorative applications or 3D additive-manufacturing inkjet technology. (See “A Very Brief History of Industrial Inkjet Printing” for more on these fields.)

Inkjet’s Advantages
Many of the forces that have driven inkjet’s development in commercial applications for the past few decades – custom printing capabilities, reduced production time and expense, and so on – also apply to industrial work. Today, we’re beginning to see the profound impact that inkjet could have on the manufacturing and supply of products. It has already enabled mass customization, just-in-time delivery, and reduced inventory risk, as well as improving manufacturing processes.


Did you enjoy this article? Click here to subscribe to the magazine.